Search results for "numerical simulation"
showing 10 items of 127 documents
Velocity field computation in bends of shallow channels
1998
Contribution to the development and the improvement of a digital model of the human body biofidelic HUByx by numerical methods for impact applications
2017
The study of human tolerance thresholds to impacts requires experiments on living or post mortem human subjects, which naturally raises ethical questions. To overcome these limitations, the development of numerical tools has led over the last few years to the implementation of numerical models more or less capable to accurately reproduce the mechanical behavior of the human body when subjected to various types of stresses. It is in this context that the numerical model HUByx (Hermaphrodite Biomechanics yx-model) has been developed within the research department COMM of the ICB lab at UTBM. This PhD work aims at validating and improving the biofidelity of the thoracic part of the HUByx model…
Electronic properties of carbon nanotubes under torsion
2012
A computationally-effective approach for calculating the electromechanical behavior of SWNTs and MWNTs of the dimensions used in nano-electronic devices has been developed. It is a mixed finite element-tight-binding code carefully designed to realize significant time saving in calculating deformation-induced changes in electrical transport properties of the nanotubes. The effect of the MWNT diameter and chirality on the conductance after mechanical deformation was investigated. In case of torsional deformation results revealed the conductance of MWNTs to depend strongly on the diameter, since bigger MWNTs reach much earlier the buckling load under torsion their electrical conductivity chang…
Noise delayed decay of unstable states: theory versus numerical simulations
2004
We study the noise delayed decay of unstable nonequilibrium states in nonlinear dynamical systems within the framework of the overdamped Brownian motion model. We give the exact expressions for the decay times of unstable states for polynomial potential profiles and obtain nonmonotonic behavior of the decay times as a function of the noise intensity for the unstable nonequilibrium states. The analytical results are compared with numerical simulations.
Interactions and structures in polydisperse suspensions of charged spherical colloids
2018
Colloidal suspensions are found a bit everywhere around us, in construction materials,in cosmetics, in food, in biology. They are composed of nanometric or micrometric particlesdispersed in a gas, a liquid or sometimes a solid.This thesis is about colloidal suspensions in ionic solutions, where colloids bear anelectric charge, for example silica particles in an aqueous solution of sodium chloride,at a basic pH. The colloids, here approximated by spheres, can vary significantly in size,which can have an important effect on the behavior of these systems.This study aims at improving the understanding of these charged colloidal suspensionsby theoretical models solved by numerical simulations.of…
Analytical design of nonlinear optical loop mirrors for fiber-optic communication systems
2006
International audience; We propose an easy and efficient method for analytically designing nonlinear optical loop mirrors (NOLMs) for fiber-optic communication systems. This analytical design is based on a Taylor series expansion of the transfer function of the NOLM, from which highly stable dynamical regimes can be readily obtained for any desired pulse parameters. We present numerical simulations showing dramatically improved performances in a 160 Gb/s transmission system that incorporates the NOLMs designed analytically.
DIRECT NUMERICAL SIMULATION OF MOTION OF FERROMAGNETIC PARTICLES IN MAGNETORHEOLOGICAL SUSPENSION
2008
ABSTRACT Results simulation of magnetorheological suspension at particle level are reported. The present approach accounts for a better description of hydrodynamic interaction between close spheres. Development of lamellar structures similar to those obtained by other researchers in Poiseuille flow is observed in shear flow. Studies of single layer lamellar structures reveal presence of short chains and more complex aggregates.
Advanced Techniques for Design and Manufacturing in Marine Engineering
2022
Modern engineering design processes are driven by the extensive use of numerical simulations, and naval architecture as well as ocean engineering are no exception. Structural design or fluid dynamic performance evaluation can only be carried out by means of several dedicated pieces of software. Classical naval design methodology can take advantage of the integration of these pieces of software, giving rise to more robust design in terms of shape, structural and hydrodynamic performances, and manufacturing processes. This Special Issue (SI) on “Advanced Techniques for Design and Manufacturing in Marine Engineering”, published in the Journal of Marine Science and Engineering, aimed to invite …
A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures
2015
Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new expe…
Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence
2021
We provide a short review of existing models with multiple taxis performed by (at least) one species and consider a new mathematical model for tumor invasion featuring two mutually exclusive cell phenotypes (migrating and proliferating). The migrating cells perform nonlinear diffusion and two types of taxis in response to non-diffusing cues: away from proliferating cells and up the gradient of surrounding tissue. Transitions between the two cell subpopulations are influenced by subcellular (receptor binding) dynamics, thus conferring the setting a multiscale character. We prove global existence of weak solutions to a simplified model version and perform numerical simulations for the full se…